Oscillation theorems for Sturm–Liouville problems with distribution potentials
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 43-49
Cet article a éte moissonné depuis la source Math-Net.Ru
The Sturm–Liouville problem \begin{gather*} -y''+q(x)y=\lambda y,\\ y(0)=y(1)=0 \end{gather*} is considered with a singular potential $q(x)$ representing the derivative of a real function from the space $L_2[0,1]$ in the distributional sense. Two approaches are developed for the study of oscillation properties of eigenfunctions of this problem. The first approach is based on generalization of methods of the Sturm theory. The second one is based on development of variational principles.
@article{VMUMM_2009_3_a7,
author = {A. A. Shkalikov and J. Ben Amara},
title = {Oscillation theorems for {Sturm{\textendash}Liouville} problems with distribution potentials},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {43--49},
year = {2009},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a7/}
}
TY - JOUR AU - A. A. Shkalikov AU - J. Ben Amara TI - Oscillation theorems for Sturm–Liouville problems with distribution potentials JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2009 SP - 43 EP - 49 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a7/ LA - ru ID - VMUMM_2009_3_a7 ER -
A. A. Shkalikov; J. Ben Amara. Oscillation theorems for Sturm–Liouville problems with distribution potentials. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 43-49. http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a7/