Weakly infinite-dimensional spaces modulo simplicial complexes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 33-40

Voir la notice de l'article provenant de la source Math-Net.Ru

The classes of spaces ${\mathscr{K}}\text{-}{\rm wid}$ and ${\mathscr{L}}\text{-}{\rm wid}$ are introduced for the class $\mathscr{K}$ of finite simplicial complexes and the class $\mathscr{L}$ of compact polyhedra. If ${\mathscr{K}}={\mathscr{L}}=\{0,1\}$, then ${\mathscr{K}}\text{-}{\rm wid}={\rm wid}$, ${\mathscr{L}}\text{-}{\rm wid}=S\text{-}{\rm wid}$. It is proved that $S\text{-}{\rm wid}\subset{\mathscr{L}} \text{-}{\rm wid}$ and ${\mathscr{L}}\text{-}{\rm wid} =S\text{-}{\mathscr{L}}_\tau\text{-}{\rm wid}$ for any triangulation $\tau$ of the class $\mathscr{L}$.
@article{VMUMM_2009_3_a5,
     author = {V. V. Fedorchuk},
     title = {Weakly infinite-dimensional spaces modulo simplicial complexes},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {33--40},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a5/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Weakly infinite-dimensional spaces modulo simplicial complexes
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2009
SP  - 33
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a5/
LA  - ru
ID  - VMUMM_2009_3_a5
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Weakly infinite-dimensional spaces modulo simplicial complexes
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2009
%P 33-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a5/
%G ru
%F VMUMM_2009_3_a5
V. V. Fedorchuk. Weakly infinite-dimensional spaces modulo simplicial complexes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 33-40. http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a5/