Weakly infinite-dimensional spaces modulo simplicial complexes
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 33-40
Voir la notice de l'article provenant de la source Math-Net.Ru
The classes of spaces ${\mathscr{K}}\text{-}{\rm wid}$ and ${\mathscr{L}}\text{-}{\rm wid}$ are introduced for the class $\mathscr{K}$ of finite simplicial complexes and the class $\mathscr{L}$ of compact polyhedra. If ${\mathscr{K}}={\mathscr{L}}=\{0,1\}$, then ${\mathscr{K}}\text{-}{\rm wid}={\rm wid}$, ${\mathscr{L}}\text{-}{\rm wid}=S\text{-}{\rm wid}$. It is proved that $S\text{-}{\rm wid}\subset{\mathscr{L}} \text{-}{\rm wid}$ and ${\mathscr{L}}\text{-}{\rm wid} =S\text{-}{\mathscr{L}}_\tau\text{-}{\rm wid}$ for any triangulation $\tau$ of the class $\mathscr{L}$.
@article{VMUMM_2009_3_a5,
author = {V. V. Fedorchuk},
title = {Weakly infinite-dimensional spaces modulo simplicial complexes},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {33--40},
publisher = {mathdoc},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a5/}
}
V. V. Fedorchuk. Weakly infinite-dimensional spaces modulo simplicial complexes. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 33-40. http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a5/