Controlling solutions to a linear differential equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 25-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Both global attainability and global reducibility problems for a control system equivalent to a linear differential equation are positively solved. Furthermore, the existence of a linear equation having a given Cauchy matrix on a given segment and coinciding with given equations on the left and right of that segment is proved. The results obtained allow one to construct a linear equation with the fundamental solutions system possessing preassigned properties.
@article{VMUMM_2009_3_a4,
     author = {I. N. Sergeev},
     title = {Controlling solutions to a linear differential equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {25--33},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a4/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Controlling solutions to a linear differential equation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2009
SP  - 25
EP  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a4/
LA  - ru
ID  - VMUMM_2009_3_a4
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Controlling solutions to a linear differential equation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2009
%P 25-33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a4/
%G ru
%F VMUMM_2009_3_a4
I. N. Sergeev. Controlling solutions to a linear differential equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 25-33. http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a4/