The inductive dimension of a space by its normal base
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 7-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			{Properties of the large inductive dimension of a space by its normal base introduced by S. Iliadis are studied. The proposed dimension-like functions generalize both classic dimensions $\operatorname{Ind}$, $\operatorname{Ind}_0$ and relative inductive dimensions $\mathrm{I}$. It is shown what properties of the normal base characterize the fullfilment of basic classic theorems of the dimension theory (sum, subset and product theorems).
			
            
            
            
          
        
      @article{VMUMM_2009_3_a1,
     author = {D. Georgiou and S. Iliadis and K. L. Kozlov},
     title = {The inductive dimension of a space by its normal base},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {7--14},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a1/}
}
                      
                      
                    TY - JOUR AU - D. Georgiou AU - S. Iliadis AU - K. L. Kozlov TI - The inductive dimension of a space by its normal base JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2009 SP - 7 EP - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a1/ LA - ru ID - VMUMM_2009_3_a1 ER -
D. Georgiou; S. Iliadis; K. L. Kozlov. The inductive dimension of a space by its normal base. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 7-14. http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a1/
