The inductive dimension of a space by its normal base
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 7-14
Cet article a éte moissonné depuis la source Math-Net.Ru
{Properties of the large inductive dimension of a space by its normal base introduced by S. Iliadis are studied. The proposed dimension-like functions generalize both classic dimensions $\operatorname{Ind}$, $\operatorname{Ind}_0$ and relative inductive dimensions $\mathrm{I}$. It is shown what properties of the normal base characterize the fullfilment of basic classic theorems of the dimension theory (sum, subset and product theorems).
@article{VMUMM_2009_3_a1,
author = {D. Georgiou and S. Iliadis and K. L. Kozlov},
title = {The inductive dimension of a space by its normal base},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {7--14},
year = {2009},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a1/}
}
D. Georgiou; S. Iliadis; K. L. Kozlov. The inductive dimension of a space by its normal base. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 7-14. http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a1/