The inductive dimension of a space by its normal base
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 7-14

Voir la notice de l'article provenant de la source Math-Net.Ru

{Properties of the large inductive dimension of a space by its normal base introduced by S. Iliadis are studied. The proposed dimension-like functions generalize both classic dimensions $\operatorname{Ind}$, $\operatorname{Ind}_0$ and relative inductive dimensions $\mathrm{I}$. It is shown what properties of the normal base characterize the fullfilment of basic classic theorems of the dimension theory (sum, subset and product theorems).
@article{VMUMM_2009_3_a1,
     author = {D. Georgiou and S. Iliadis and K. L. Kozlov},
     title = {The inductive dimension of a space by its normal base},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {7--14},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a1/}
}
TY  - JOUR
AU  - D. Georgiou
AU  - S. Iliadis
AU  - K. L. Kozlov
TI  - The inductive dimension of a space by its normal base
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2009
SP  - 7
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a1/
LA  - ru
ID  - VMUMM_2009_3_a1
ER  - 
%0 Journal Article
%A D. Georgiou
%A S. Iliadis
%A K. L. Kozlov
%T The inductive dimension of a space by its normal base
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2009
%P 7-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a1/
%G ru
%F VMUMM_2009_3_a1
D. Georgiou; S. Iliadis; K. L. Kozlov. The inductive dimension of a space by its normal base. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (2009), pp. 7-14. http://geodesic.mathdoc.fr/item/VMUMM_2009_3_a1/