Asymptotic behavior at infinity for solutions of Emden-Fowler type equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2009), pp. 53-56
Voir la notice de l'article provenant de la source Math-Net.Ru
The semilinear equation $\Delta u=|u|^{\sigma-1}u$ is considered in the exterior of a ball in $\mathbb{R}^n$, $n\ge3$. It is shown that if the exponent $\sigma$ is greater than a “critical” value ($=\frac{n}{n-2}$), then for $x\to\infty$ the leading term of the asymptotics of any solution is a linear combination of derivatives of the fundamental solution. It is shown that solutions with the indicated leading term in asymptotics of such a type exist.
@article{VMUMM_2009_2_a9,
author = {M. D. Surnachev},
title = {Asymptotic behavior at infinity for solutions of {Emden-Fowler} type equations},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {53--56},
publisher = {mathdoc},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a9/}
}
TY - JOUR AU - M. D. Surnachev TI - Asymptotic behavior at infinity for solutions of Emden-Fowler type equations JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2009 SP - 53 EP - 56 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a9/ LA - ru ID - VMUMM_2009_2_a9 ER -
M. D. Surnachev. Asymptotic behavior at infinity for solutions of Emden-Fowler type equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2009), pp. 53-56. http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a9/