Non-existence of distinct codirected locally minimal trees on a plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2009), pp. 21-25

Voir la notice de l'article provenant de la source Math-Net.Ru

Locally minimal graphs on a plane are considered. A simpler proof is given for the uniqueness of a globally minimal spanning tree on a plane in the general case. The proof presented here uses only local minimality of trees and is of independent interest.
@article{VMUMM_2009_2_a4,
     author = {K. I. Oblakov},
     title = {Non-existence of distinct codirected locally minimal trees on a plane},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--25},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a4/}
}
TY  - JOUR
AU  - K. I. Oblakov
TI  - Non-existence of distinct codirected locally minimal trees on a plane
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2009
SP  - 21
EP  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a4/
LA  - ru
ID  - VMUMM_2009_2_a4
ER  - 
%0 Journal Article
%A K. I. Oblakov
%T Non-existence of distinct codirected locally minimal trees on a plane
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2009
%P 21-25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a4/
%G ru
%F VMUMM_2009_2_a4
K. I. Oblakov. Non-existence of distinct codirected locally minimal trees on a plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2009), pp. 21-25. http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a4/