Linear independence of values of Lerch functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2009), pp. 56-59

Voir la notice de l'article provenant de la source Math-Net.Ru

The number of linearly independent numbers among $1,\Phi _1\left( z,\frac{p}{q}\right),\ldots,\Phi _a\left( z,\frac{p}{q}\right)$ is estimated depending on a natural number $a$, where $\Phi _s \left(z,\frac{p}{q}\right),\ s=1,2,\ldots$, are Lerch functions.
@article{VMUMM_2009_2_a10,
     author = {E. A. Ulanskii},
     title = {Linear independence of values of {Lerch} functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {56--59},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a10/}
}
TY  - JOUR
AU  - E. A. Ulanskii
TI  - Linear independence of values of Lerch functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2009
SP  - 56
EP  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a10/
LA  - ru
ID  - VMUMM_2009_2_a10
ER  - 
%0 Journal Article
%A E. A. Ulanskii
%T Linear independence of values of Lerch functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2009
%P 56-59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a10/
%G ru
%F VMUMM_2009_2_a10
E. A. Ulanskii. Linear independence of values of Lerch functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (2009), pp. 56-59. http://geodesic.mathdoc.fr/item/VMUMM_2009_2_a10/