Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2008), pp. 16-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMUMM_2008_4_a2,
     author = {O. G. Smolyanov and N. N. Shamarov},
     title = {Representation of solutions to a heat conduction equation with {Vladimirov{\textquoteright}s} operator by functional integrals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--22},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2008_4_a2/}
}
                      
                      
                    TY - JOUR AU - O. G. Smolyanov AU - N. N. Shamarov TI - Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2008 SP - 16 EP - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2008_4_a2/ LA - ru ID - VMUMM_2008_4_a2 ER -
%0 Journal Article %A O. G. Smolyanov %A N. N. Shamarov %T Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2008 %P 16-22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2008_4_a2/ %G ru %F VMUMM_2008_4_a2
O. G. Smolyanov; N. N. Shamarov. Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2008), pp. 16-22. http://geodesic.mathdoc.fr/item/VMUMM_2008_4_a2/
