Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2008), pp. 16-22

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VMUMM_2008_4_a2,
     author = {O. G. Smolyanov and N. N. Shamarov},
     title = {Representation of solutions to a heat conduction equation with {Vladimirov{\textquoteright}s} operator by functional integrals},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {16--22},
     publisher = {mathdoc},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2008_4_a2/}
}
TY  - JOUR
AU  - O. G. Smolyanov
AU  - N. N. Shamarov
TI  - Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2008
SP  - 16
EP  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2008_4_a2/
LA  - ru
ID  - VMUMM_2008_4_a2
ER  - 
%0 Journal Article
%A O. G. Smolyanov
%A N. N. Shamarov
%T Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2008
%P 16-22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2008_4_a2/
%G ru
%F VMUMM_2008_4_a2
O. G. Smolyanov; N. N. Shamarov. Representation of solutions to a heat conduction equation with Vladimirov’s operator by functional integrals. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2008), pp. 16-22. http://geodesic.mathdoc.fr/item/VMUMM_2008_4_a2/