A solution uniqueness theorem for the converse problem of spectral analysis for the Gegenbauer operator with a finite potential
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2003), pp. 40-42

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VMUMM_2003_6_a7,
     author = {V. V. Dubrovskii and N. V. Semin},
     title = {A solution uniqueness theorem for the converse problem of spectral analysis for the {Gegenbauer} operator with a finite potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--42},
     publisher = {mathdoc},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2003_6_a7/}
}
TY  - JOUR
AU  - V. V. Dubrovskii
AU  - N. V. Semin
TI  - A solution uniqueness theorem for the converse problem of spectral analysis for the Gegenbauer operator with a finite potential
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2003
SP  - 40
EP  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2003_6_a7/
LA  - ru
ID  - VMUMM_2003_6_a7
ER  - 
%0 Journal Article
%A V. V. Dubrovskii
%A N. V. Semin
%T A solution uniqueness theorem for the converse problem of spectral analysis for the Gegenbauer operator with a finite potential
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2003
%P 40-42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_2003_6_a7/
%G ru
%F VMUMM_2003_6_a7
V. V. Dubrovskii; N. V. Semin. A solution uniqueness theorem for the converse problem of spectral analysis for the Gegenbauer operator with a finite potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2003), pp. 40-42. http://geodesic.mathdoc.fr/item/VMUMM_2003_6_a7/