A solution uniqueness theorem for the converse problem of spectral analysis for the Gegenbauer operator with a finite potential
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2003), pp. 40-42
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMUMM_2003_6_a7,
     author = {V. V. Dubrovskii and N. V. Semin},
     title = {A solution uniqueness theorem for the converse problem of spectral analysis for the {Gegenbauer} operator with a finite potential},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--42},
     publisher = {mathdoc},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2003_6_a7/}
}
                      
                      
                    TY - JOUR AU - V. V. Dubrovskii AU - N. V. Semin TI - A solution uniqueness theorem for the converse problem of spectral analysis for the Gegenbauer operator with a finite potential JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2003 SP - 40 EP - 42 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2003_6_a7/ LA - ru ID - VMUMM_2003_6_a7 ER -
%0 Journal Article %A V. V. Dubrovskii %A N. V. Semin %T A solution uniqueness theorem for the converse problem of spectral analysis for the Gegenbauer operator with a finite potential %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2003 %P 40-42 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2003_6_a7/ %G ru %F VMUMM_2003_6_a7
V. V. Dubrovskii; N. V. Semin. A solution uniqueness theorem for the converse problem of spectral analysis for the Gegenbauer operator with a finite potential. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (2003), pp. 40-42. http://geodesic.mathdoc.fr/item/VMUMM_2003_6_a7/
