Classification of minimal networks on a complete surface of constant negative curvature with three “parabolic ends”
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2001), pp. 13-17
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{VMUMM_2001_4_a2,
author = {O. O. Egorova},
title = {Classification of minimal networks on a complete surface of constant negative curvature with three {\textquotedblleft}parabolic ends{\textquotedblright}},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {13--17},
year = {2001},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/}
}
TY - JOUR AU - O. O. Egorova TI - Classification of minimal networks on a complete surface of constant negative curvature with three “parabolic ends” JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2001 SP - 13 EP - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/ LA - ru ID - VMUMM_2001_4_a2 ER -
%0 Journal Article %A O. O. Egorova %T Classification of minimal networks on a complete surface of constant negative curvature with three “parabolic ends” %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2001 %P 13-17 %N 4 %U http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/ %G ru %F VMUMM_2001_4_a2
O. O. Egorova. Classification of minimal networks on a complete surface of constant negative curvature with three “parabolic ends”. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2001), pp. 13-17. http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/