Classification of minimal networks on a complete surface of constant negative curvature with three “parabolic ends”
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2001), pp. 13-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMUMM_2001_4_a2,
     author = {O. O. Egorova},
     title = {Classification of minimal networks on a complete surface of constant negative curvature with three {\textquotedblleft}parabolic ends{\textquotedblright}},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {13--17},
     year = {2001},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/}
}
TY  - JOUR
AU  - O. O. Egorova
TI  - Classification of minimal networks on a complete surface of constant negative curvature with three “parabolic ends”
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 2001
SP  - 13
EP  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/
LA  - ru
ID  - VMUMM_2001_4_a2
ER  - 
%0 Journal Article
%A O. O. Egorova
%T Classification of minimal networks on a complete surface of constant negative curvature with three “parabolic ends”
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 2001
%P 13-17
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/
%G ru
%F VMUMM_2001_4_a2
O. O. Egorova. Classification of minimal networks on a complete surface of constant negative curvature with three “parabolic ends”. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2001), pp. 13-17. http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/