Classification of minimal networks on a complete surface of constant negative curvature with three ``parabolic ends''
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2001), pp. 13-17
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMUMM_2001_4_a2,
     author = {O. O. Egorova},
     title = {Classification of minimal networks on a complete surface of constant negative curvature with three ``parabolic ends''},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {13--17},
     publisher = {mathdoc},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/}
}
                      
                      
                    TY - JOUR AU - O. O. Egorova TI - Classification of minimal networks on a complete surface of constant negative curvature with three ``parabolic ends'' JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 2001 SP - 13 EP - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/ LA - ru ID - VMUMM_2001_4_a2 ER -
%0 Journal Article %A O. O. Egorova %T Classification of minimal networks on a complete surface of constant negative curvature with three ``parabolic ends'' %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 2001 %P 13-17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/ %G ru %F VMUMM_2001_4_a2
O. O. Egorova. Classification of minimal networks on a complete surface of constant negative curvature with three ``parabolic ends''. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (2001), pp. 13-17. http://geodesic.mathdoc.fr/item/VMUMM_2001_4_a2/
