Does every noncompact manifold have a compactification that is a manifold?
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1999), pp. 42-44
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMUMM_1999_3_a10,
author = {Yu. M. Smirnov},
title = {Does every noncompact manifold have a compactification that is a manifold?},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {42--44},
publisher = {mathdoc},
number = {3},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1999_3_a10/}
}
TY - JOUR AU - Yu. M. Smirnov TI - Does every noncompact manifold have a compactification that is a manifold? JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1999 SP - 42 EP - 44 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1999_3_a10/ LA - ru ID - VMUMM_1999_3_a10 ER -
Yu. M. Smirnov. Does every noncompact manifold have a compactification that is a manifold?. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1999), pp. 42-44. http://geodesic.mathdoc.fr/item/VMUMM_1999_3_a10/