Does every noncompact manifold have a compactification that is a manifold?
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1999), pp. 42-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMUMM_1999_3_a10,
     author = {Yu. M. Smirnov},
     title = {Does every noncompact manifold have a compactification that is a manifold?},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {42--44},
     year = {1999},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1999_3_a10/}
}
TY  - JOUR
AU  - Yu. M. Smirnov
TI  - Does every noncompact manifold have a compactification that is a manifold?
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1999
SP  - 42
EP  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1999_3_a10/
LA  - ru
ID  - VMUMM_1999_3_a10
ER  - 
%0 Journal Article
%A Yu. M. Smirnov
%T Does every noncompact manifold have a compactification that is a manifold?
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1999
%P 42-44
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_1999_3_a10/
%G ru
%F VMUMM_1999_3_a10
Yu. M. Smirnov. Does every noncompact manifold have a compactification that is a manifold?. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1999), pp. 42-44. http://geodesic.mathdoc.fr/item/VMUMM_1999_3_a10/