A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1998), pp. 53-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMUMM_1998_5_a10,
     author = {V. S. Matveev and P. Topalov},
     title = {A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {53--55},
     publisher = {mathdoc},
     number = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1998_5_a10/}
}
                      
                      
                    TY - JOUR AU - V. S. Matveev AU - P. Topalov TI - A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1998 SP - 53 EP - 55 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1998_5_a10/ LA - ru ID - VMUMM_1998_5_a10 ER -
%0 Journal Article %A V. S. Matveev %A P. Topalov %T A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1998 %P 53-55 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1998_5_a10/ %G ru %F VMUMM_1998_5_a10
V. S. Matveev; P. Topalov. A metric on a sphere that is geodesically equivalent to itself a metric of constant curvature is a metric of constant curvature. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1998), pp. 53-55. http://geodesic.mathdoc.fr/item/VMUMM_1998_5_a10/
