On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1995), pp. 91-93
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMUMM_1995_3_a18,
     author = {Yu. V. Tarannikov},
     title = {On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {91--93},
     publisher = {mathdoc},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1995_3_a18/}
}
                      
                      
                    TY - JOUR AU - Yu. V. Tarannikov TI - On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1995 SP - 91 EP - 93 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1995_3_a18/ LA - ru ID - VMUMM_1995_3_a18 ER -
%0 Journal Article %A Yu. V. Tarannikov %T On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1995 %P 91-93 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1995_3_a18/ %G ru %F VMUMM_1995_3_a18
Yu. V. Tarannikov. On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1995), pp. 91-93. http://geodesic.mathdoc.fr/item/VMUMM_1995_3_a18/
