On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1995), pp. 91-93

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VMUMM_1995_3_a18,
     author = {Yu. V. Tarannikov},
     title = {On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {91--93},
     publisher = {mathdoc},
     number = {3},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1995_3_a18/}
}
TY  - JOUR
AU  - Yu. V. Tarannikov
TI  - On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1995
SP  - 91
EP  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1995_3_a18/
LA  - ru
ID  - VMUMM_1995_3_a18
ER  - 
%0 Journal Article
%A Yu. V. Tarannikov
%T On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1995
%P 91-93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1995_3_a18/
%G ru
%F VMUMM_1995_3_a18
Yu. V. Tarannikov. On a binary vector of length $n$ that is $l$-balanced with the largest number of binary vectors. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1995), pp. 91-93. http://geodesic.mathdoc.fr/item/VMUMM_1995_3_a18/