Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1993), pp. 68-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMUMM_1993_1_a15,
     author = {M. V. Shamolin},
     title = {Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {68--71},
     year = {1993},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1993_1_a15/}
}
TY  - JOUR
AU  - M. V. Shamolin
TI  - Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1993
SP  - 68
EP  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1993_1_a15/
LA  - ru
ID  - VMUMM_1993_1_a15
ER  - 
%0 Journal Article
%A M. V. Shamolin
%T Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1993
%P 68-71
%N 1
%U http://geodesic.mathdoc.fr/item/VMUMM_1993_1_a15/
%G ru
%F VMUMM_1993_1_a15
M. V. Shamolin. Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1993), pp. 68-71. http://geodesic.mathdoc.fr/item/VMUMM_1993_1_a15/