Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1993), pp. 68-71
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{VMUMM_1993_1_a15,
author = {M. V. Shamolin},
title = {Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {68--71},
year = {1993},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1993_1_a15/}
}
TY - JOUR AU - M. V. Shamolin TI - Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1993 SP - 68 EP - 71 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMUMM_1993_1_a15/ LA - ru ID - VMUMM_1993_1_a15 ER -
%0 Journal Article %A M. V. Shamolin %T Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1993 %P 68-71 %N 1 %U http://geodesic.mathdoc.fr/item/VMUMM_1993_1_a15/ %G ru %F VMUMM_1993_1_a15
M. V. Shamolin. Existence and uniqueness of trajectories that have points at infinity as limit sets for dynamical systems on the plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1993), pp. 68-71. http://geodesic.mathdoc.fr/item/VMUMM_1993_1_a15/