On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1992), pp. 81-84

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VMUMM_1992_5_a18,
     author = {S. S. Volosivets},
     title = {On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {81--84},
     publisher = {mathdoc},
     number = {5},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1992
SP  - 81
EP  - 84
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/
LA  - ru
ID  - VMUMM_1992_5_a18
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1992
%P 81-84
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/
%G ru
%F VMUMM_1992_5_a18
S. S. Volosivets. On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1992), pp. 81-84. http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/