On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1992), pp. 81-84
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{VMUMM_1992_5_a18,
author = {S. S. Volosivets},
title = {On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {81--84},
year = {1992},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/}
}
TY - JOUR AU - S. S. Volosivets TI - On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1992 SP - 81 EP - 84 IS - 5 UR - http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/ LA - ru ID - VMUMM_1992_5_a18 ER -
%0 Journal Article %A S. S. Volosivets %T On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1992 %P 81-84 %N 5 %U http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/ %G ru %F VMUMM_1992_5_a18
S. S. Volosivets. On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1992), pp. 81-84. http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/