On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1992), pp. 81-84
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMUMM_1992_5_a18,
     author = {S. S. Volosivets},
     title = {On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {81--84},
     publisher = {mathdoc},
     number = {5},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/}
}
                      
                      
                    TY - JOUR AU - S. S. Volosivets TI - On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1992 SP - 81 EP - 84 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/ LA - ru ID - VMUMM_1992_5_a18 ER -
%0 Journal Article %A S. S. Volosivets %T On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1992 %P 81-84 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/ %G ru %F VMUMM_1992_5_a18
S. S. Volosivets. On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1992), pp. 81-84. http://geodesic.mathdoc.fr/item/VMUMM_1992_5_a18/
