Mappings that are co-absolute to a projection that is parallel to the Cantor perfect set
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1989), pp. 40-44

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VMUMM_1989_1_a8,
     author = {I. Bandlov},
     title = {Mappings that are co-absolute to a projection that is parallel to the {Cantor} perfect set},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {40--44},
     publisher = {mathdoc},
     number = {1},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1989_1_a8/}
}
TY  - JOUR
AU  - I. Bandlov
TI  - Mappings that are co-absolute to a projection that is parallel to the Cantor perfect set
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1989
SP  - 40
EP  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1989_1_a8/
LA  - ru
ID  - VMUMM_1989_1_a8
ER  - 
%0 Journal Article
%A I. Bandlov
%T Mappings that are co-absolute to a projection that is parallel to the Cantor perfect set
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1989
%P 40-44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1989_1_a8/
%G ru
%F VMUMM_1989_1_a8
I. Bandlov. Mappings that are co-absolute to a projection that is parallel to the Cantor perfect set. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1989), pp. 40-44. http://geodesic.mathdoc.fr/item/VMUMM_1989_1_a8/