Compact spaces of the form $F(X)$ that are continuous images of $I^\tau$ and $D^\tau$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1988), pp. 3-5

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VMUMM_1988_3_a0,
     author = {A. G. Savchenko},
     title = {Compact spaces of the form $F(X)$ that are continuous images of $I^\tau$ and $D^\tau$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {3--5},
     publisher = {mathdoc},
     number = {3},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1988_3_a0/}
}
TY  - JOUR
AU  - A. G. Savchenko
TI  - Compact spaces of the form $F(X)$ that are continuous images of $I^\tau$ and $D^\tau$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1988
SP  - 3
EP  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1988_3_a0/
LA  - ru
ID  - VMUMM_1988_3_a0
ER  - 
%0 Journal Article
%A A. G. Savchenko
%T Compact spaces of the form $F(X)$ that are continuous images of $I^\tau$ and $D^\tau$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1988
%P 3-5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1988_3_a0/
%G ru
%F VMUMM_1988_3_a0
A. G. Savchenko. Compact spaces of the form $F(X)$ that are continuous images of $I^\tau$ and $D^\tau$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1988), pp. 3-5. http://geodesic.mathdoc.fr/item/VMUMM_1988_3_a0/