Construction of a birational isomorphism of a three-dimensional cubic and a Fano variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1985), pp. 99-101

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{VMUMM_1985_6_a18,
     author = {S. L. Tregub},
     title = {Construction of a birational isomorphism of a three-dimensional cubic and a {Fano} variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {99--101},
     publisher = {mathdoc},
     number = {6},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1985_6_a18/}
}
TY  - JOUR
AU  - S. L. Tregub
TI  - Construction of a birational isomorphism of a three-dimensional cubic and a Fano variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1985
SP  - 99
EP  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1985_6_a18/
LA  - ru
ID  - VMUMM_1985_6_a18
ER  - 
%0 Journal Article
%A S. L. Tregub
%T Construction of a birational isomorphism of a three-dimensional cubic and a Fano variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1985
%P 99-101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1985_6_a18/
%G ru
%F VMUMM_1985_6_a18
S. L. Tregub. Construction of a birational isomorphism of a three-dimensional cubic and a Fano variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1985), pp. 99-101. http://geodesic.mathdoc.fr/item/VMUMM_1985_6_a18/