Construction of a birational isomorphism of a three-dimensional cubic and a Fano variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1985), pp. 99-101
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VMUMM_1985_6_a18,
author = {S. L. Tregub},
title = {Construction of a birational isomorphism of a three-dimensional cubic and a {Fano} variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {99--101},
publisher = {mathdoc},
number = {6},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1985_6_a18/}
}
TY - JOUR AU - S. L. Tregub TI - Construction of a birational isomorphism of a three-dimensional cubic and a Fano variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$ JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1985 SP - 99 EP - 101 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1985_6_a18/ LA - ru ID - VMUMM_1985_6_a18 ER -
%0 Journal Article %A S. L. Tregub %T Construction of a birational isomorphism of a three-dimensional cubic and a Fano variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$ %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1985 %P 99-101 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1985_6_a18/ %G ru %F VMUMM_1985_6_a18
S. L. Tregub. Construction of a birational isomorphism of a three-dimensional cubic and a Fano variety of the first kind with $g=8$, connected with a normal rational curve of degree $4$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1985), pp. 99-101. http://geodesic.mathdoc.fr/item/VMUMM_1985_6_a18/