A sufficient condition for algebraic independence of numbers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1983), pp. 63-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A lower estimate is derived from the existence of a sequence of polynomials with two-sided estimates at a point $(\omega_1,\dots,\omega_d)\in\mathbf{C}^d$.
@article{VMUMM_1983_4_a9,
     author = {Yu. V. Nesterenko},
     title = {A sufficient condition for algebraic independence of numbers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {63--68},
     year = {1983},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_4_a9/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - A sufficient condition for algebraic independence of numbers
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 63
EP  - 68
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_4_a9/
LA  - ru
ID  - VMUMM_1983_4_a9
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T A sufficient condition for algebraic independence of numbers
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 63-68
%N 4
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_4_a9/
%G ru
%F VMUMM_1983_4_a9
Yu. V. Nesterenko. A sufficient condition for algebraic independence of numbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1983), pp. 63-68. http://geodesic.mathdoc.fr/item/VMUMM_1983_4_a9/