Complete asymptotic expansion of a spectral function of elliptic operators in $R^n$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1983), pp. 29-36

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a complete asymptotic expansion as $\lambda\to\infty$, $|x|,|y|\le b\infty$ of a spectral function $e_\lambda(x,y)$ of elliptic operators of the second order in $R^n$ for which the “non-trapping mode” condition is fulfilled, i. е., bicharacteristics emergent from any point extend to infinity.
@article{VMUMM_1983_4_a5,
     author = {B. R. Vainberg},
     title = {Complete asymptotic expansion of a spectral function of elliptic operators in $R^n$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {29--36},
     publisher = {mathdoc},
     number = {4},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_4_a5/}
}
TY  - JOUR
AU  - B. R. Vainberg
TI  - Complete asymptotic expansion of a spectral function of elliptic operators in $R^n$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 29
EP  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_4_a5/
LA  - ru
ID  - VMUMM_1983_4_a5
ER  - 
%0 Journal Article
%A B. R. Vainberg
%T Complete asymptotic expansion of a spectral function of elliptic operators in $R^n$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 29-36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_4_a5/
%G ru
%F VMUMM_1983_4_a5
B. R. Vainberg. Complete asymptotic expansion of a spectral function of elliptic operators in $R^n$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 4 (1983), pp. 29-36. http://geodesic.mathdoc.fr/item/VMUMM_1983_4_a5/