Estimate of the first eigenvalue of a selfadjoint elliptic operator
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 46-52
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L$ be a symmetric positive elliptic operator o! order m with smooth coefficients in a bounded domain. The problem considered is that of estimating a minimum number $\lambda$ for which the homogeneous Dirichlet problem for the equation $Lu-\lambda Qu=0$ has a non-trivial solution. It is assumed that $Q(x)\ge0$, $\int Q^\alpha(x)\,dx=1$, where $\alpha$ is a real number, $\alpha\ne0$.
@article{VMUMM_1983_3_a8,
author = {Yu. V. Egorov and V. A. Kondratiev},
title = {Estimate of the first eigenvalue of a selfadjoint elliptic operator},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {46--52},
publisher = {mathdoc},
number = {3},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a8/}
}
TY - JOUR AU - Yu. V. Egorov AU - V. A. Kondratiev TI - Estimate of the first eigenvalue of a selfadjoint elliptic operator JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1983 SP - 46 EP - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a8/ LA - ru ID - VMUMM_1983_3_a8 ER -
Yu. V. Egorov; V. A. Kondratiev. Estimate of the first eigenvalue of a selfadjoint elliptic operator. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 46-52. http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a8/