Set theory in type-free combinatorially complete systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 36-42

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains the results of an analysis of $\mathscr{A}_0$-system. The introduction of set-theoretical concepts into deductive extensions of Church's calculus of $\lambda$-conversion is discussed.
@article{VMUMM_1983_3_a6,
     author = {A. S. Kuzichev},
     title = {Set theory in type-free combinatorially complete systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {36--42},
     publisher = {mathdoc},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a6/}
}
TY  - JOUR
AU  - A. S. Kuzichev
TI  - Set theory in type-free combinatorially complete systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 36
EP  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a6/
LA  - ru
ID  - VMUMM_1983_3_a6
ER  - 
%0 Journal Article
%A A. S. Kuzichev
%T Set theory in type-free combinatorially complete systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 36-42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a6/
%G ru
%F VMUMM_1983_3_a6
A. S. Kuzichev. Set theory in type-free combinatorially complete systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 36-42. http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a6/