Schreier and Hall varieties of unary algebras
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 24-28

Voir la notice de l'article provenant de la source Math-Net.Ru

To every variety of unary algebras is put into correspondence a pair $(R,I)$, where $R$ is a monoid and $I$ is its left ideal satisfying the condition $\nu\lambda=\nu$ for all $\nu\in I$ and $\lambda\in R$. Properties of this pair are indicated which are equivalent to the original variety being a Schreier one (subalgebras of free algebras are free) or being a Hall variety (retracts of free algebras are free).
@article{VMUMM_1983_3_a4,
     author = {L. A. Skornyakov},
     title = {Schreier and {Hall} varieties of unary algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {24--28},
     publisher = {mathdoc},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a4/}
}
TY  - JOUR
AU  - L. A. Skornyakov
TI  - Schreier and Hall varieties of unary algebras
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 24
EP  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a4/
LA  - ru
ID  - VMUMM_1983_3_a4
ER  - 
%0 Journal Article
%A L. A. Skornyakov
%T Schreier and Hall varieties of unary algebras
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 24-28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a4/
%G ru
%F VMUMM_1983_3_a4
L. A. Skornyakov. Schreier and Hall varieties of unary algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 24-28. http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a4/