The heat equation in a medium with nonuniformly distributed nonlinear heat sources or absorbers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 20-24
Voir la notice de l'article provenant de la source Math-Net.Ru
For a heat conduction equation with non-linear sources whose action intensifies at infinity, it is proved that the Cauchy problem has no locally bounded solution in any time interval. In the case of non-linear heat absorption decaying at infinity, necessary and sufficient conditions are found for instantaneous compactification of the support of the solution for the Cauchy problem.
@article{VMUMM_1983_3_a3,
author = {A. S. Kalashnikov},
title = {The heat equation in a medium with nonuniformly distributed nonlinear heat sources or absorbers},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {20--24},
publisher = {mathdoc},
number = {3},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a3/}
}
TY - JOUR AU - A. S. Kalashnikov TI - The heat equation in a medium with nonuniformly distributed nonlinear heat sources or absorbers JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1983 SP - 20 EP - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a3/ LA - ru ID - VMUMM_1983_3_a3 ER -
%0 Journal Article %A A. S. Kalashnikov %T The heat equation in a medium with nonuniformly distributed nonlinear heat sources or absorbers %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1983 %P 20-24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a3/ %G ru %F VMUMM_1983_3_a3
A. S. Kalashnikov. The heat equation in a medium with nonuniformly distributed nonlinear heat sources or absorbers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 20-24. http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a3/