The property of extendability of limit distributions for the maximum term of a sequence
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 11-20

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\xi_2,\dots$ be a sequence of identically distributed independent random variables, and let $$ \eta_n=\max(\xi,\xi_2,\dots,\xi_n). $$ The following theorem is proved: If for a certain choice of constants $b_n>0$ and $a_n$ $$ P\biggl\{\frac1{b_n}(\eta_n-a_n)\biggr\}\to\Phi(x),\quad n\to\infty, $$ where $\Phi(x)$ is one of the three possible limiting distributions, and if the convergence is fulfilled in an interval $(c,d)$ for which $\Phi(d)-\Phi(c)>0$, then the convergence holds for all values of $x$. Библиогр. 5.
@article{VMUMM_1983_3_a2,
     author = {B. V. Gnedenko and L. Senusi-Bereksi},
     title = {The property of extendability of limit distributions for the maximum term of a sequence},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--20},
     publisher = {mathdoc},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a2/}
}
TY  - JOUR
AU  - B. V. Gnedenko
AU  - L. Senusi-Bereksi
TI  - The property of extendability of limit distributions for the maximum term of a sequence
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 11
EP  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a2/
LA  - ru
ID  - VMUMM_1983_3_a2
ER  - 
%0 Journal Article
%A B. V. Gnedenko
%A L. Senusi-Bereksi
%T The property of extendability of limit distributions for the maximum term of a sequence
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 11-20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a2/
%G ru
%F VMUMM_1983_3_a2
B. V. Gnedenko; L. Senusi-Bereksi. The property of extendability of limit distributions for the maximum term of a sequence. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 11-20. http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a2/