The property of extendability of limit distributions for the maximum term of a sequence
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 11-20
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi_1,\xi_2,\dots$ be a sequence of identically distributed independent random variables, and let $$ \eta_n=\max(\xi,\xi_2,\dots,\xi_n). $$ The following theorem is proved: If for a certain choice of constants $b_n>0$ and $a_n$ $$ P\biggl\{\frac1{b_n}(\eta_n-a_n)<x\biggr\}\to\Phi(x),\quad n\to\infty, $$ where $\Phi(x)$ is one of the three possible limiting distributions, and if the convergence is fulfilled in an interval $(c,d)$ for which $\Phi(d)-\Phi(c)>0$, then the convergence holds for all values of $x$. Библиогр. 5.
@article{VMUMM_1983_3_a2,
author = {B. V. Gnedenko and L. Senusi-Bereksi},
title = {The property of extendability of limit distributions for the maximum term of a sequence},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {11--20},
year = {1983},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a2/}
}
TY - JOUR AU - B. V. Gnedenko AU - L. Senusi-Bereksi TI - The property of extendability of limit distributions for the maximum term of a sequence JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1983 SP - 11 EP - 20 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a2/ LA - ru ID - VMUMM_1983_3_a2 ER -
%0 Journal Article %A B. V. Gnedenko %A L. Senusi-Bereksi %T The property of extendability of limit distributions for the maximum term of a sequence %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1983 %P 11-20 %N 3 %U http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a2/ %G ru %F VMUMM_1983_3_a2
B. V. Gnedenko; L. Senusi-Bereksi. The property of extendability of limit distributions for the maximum term of a sequence. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 11-20. http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a2/