Isomorphisms of the general linear group over an associative ring
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 61-72

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every isomorphism of linear groups $\varphi\colon\mathrm{GL}_n(R)\to\mathrm{GL}_m(S)$ over arbitrary associative rings $R$ and $S$ with $1/2\in R$ and $1/2\in S$ for $n,m\ge3$ is a standard one on a subgroup $\mathrm{GE}_n(R)$ generated by elementary and diagonal matrices.
@article{VMUMM_1983_3_a11,
     author = {I. Z. Golubchik and A. V. Mikhalev},
     title = {Isomorphisms of the general linear group over an associative ring},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {61--72},
     publisher = {mathdoc},
     number = {3},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a11/}
}
TY  - JOUR
AU  - I. Z. Golubchik
AU  - A. V. Mikhalev
TI  - Isomorphisms of the general linear group over an associative ring
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 61
EP  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a11/
LA  - ru
ID  - VMUMM_1983_3_a11
ER  - 
%0 Journal Article
%A I. Z. Golubchik
%A A. V. Mikhalev
%T Isomorphisms of the general linear group over an associative ring
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 61-72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a11/
%G ru
%F VMUMM_1983_3_a11
I. Z. Golubchik; A. V. Mikhalev. Isomorphisms of the general linear group over an associative ring. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 61-72. http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a11/