Isomorphisms of the general linear group over an associative ring
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 61-72
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that every isomorphism of linear groups $\varphi\colon\mathrm{GL}_n(R)\to\mathrm{GL}_m(S)$ over arbitrary associative rings $R$ and $S$ with $1/2\in R$ and $1/2\in S$ for $n,m\ge3$ is a standard one on a subgroup $\mathrm{GE}_n(R)$ generated by elementary and diagonal matrices.
@article{VMUMM_1983_3_a11,
author = {I. Z. Golubchik and A. V. Mikhalev},
title = {Isomorphisms of the general linear group over an associative ring},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {61--72},
year = {1983},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a11/}
}
TY - JOUR AU - I. Z. Golubchik AU - A. V. Mikhalev TI - Isomorphisms of the general linear group over an associative ring JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1983 SP - 61 EP - 72 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a11/ LA - ru ID - VMUMM_1983_3_a11 ER -
I. Z. Golubchik; A. V. Mikhalev. Isomorphisms of the general linear group over an associative ring. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 61-72. http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a11/