Properties of random sections of an $N$-dimensional cube
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 8-11
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An answer is given to a question of T. Figiel and W. Johnson. It is shown that $0<\alpha<1$, $1\le n\le N^\alpha$, $$ \int d(l^N_\infty\cap L,l^n_2)\,d\mu_{N,n}\le C_\alpha\max(n^{1/2}\ln^{-1/2}N,1), $$ where $d(X,Y)$ is the Banach–Mazur distance between normed spaces $X$ and $Y$, $L$ are $n$-dimensional subspaces in $R^N$, and $\mu_{N,n}$ is the invariant measure on the set of all $n$-dimensional subspaces in $R^N$.
@article{VMUMM_1983_3_a1,
     author = {B. S. Kashin},
     title = {Properties of random sections of an $N$-dimensional cube},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--11},
     year = {1983},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a1/}
}
TY  - JOUR
AU  - B. S. Kashin
TI  - Properties of random sections of an $N$-dimensional cube
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 8
EP  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a1/
LA  - ru
ID  - VMUMM_1983_3_a1
ER  - 
%0 Journal Article
%A B. S. Kashin
%T Properties of random sections of an $N$-dimensional cube
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 8-11
%N 3
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a1/
%G ru
%F VMUMM_1983_3_a1
B. S. Kashin. Properties of random sections of an $N$-dimensional cube. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1983), pp. 8-11. http://geodesic.mathdoc.fr/item/VMUMM_1983_3_a1/