Pointwise convergence of Fourier series with respect to multiplicative systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 37-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the pointwise convergence of Fourier series with respect to multiplicative Vilenkin systems. We derive some two-sided estimates of Dirichlet kernels. We find analogies of the Dini condition for the convergence of the Fourier series at some point $x$. In particular, we show that, whenever the condition $$ \int_G\frac{|f(x\dotplus t)+f(x\overset{.}-t)-2f(x)|}{t}\,dt\infty $$ guarantees the convergence of the Fourier series $f(x)$ at $x$ the same is not true of the condition $$ \int_G\frac{|f(x\dotplus t)-f(x)|}{t}\,dt\infty $$ (for unbounded systems).
@article{VMUMM_1983_2_a7,
     author = {V. I. Shcherbakov},
     title = {Pointwise convergence of {Fourier} series with respect to multiplicative systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {37--42},
     publisher = {mathdoc},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a7/}
}
TY  - JOUR
AU  - V. I. Shcherbakov
TI  - Pointwise convergence of Fourier series with respect to multiplicative systems
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 37
EP  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a7/
LA  - ru
ID  - VMUMM_1983_2_a7
ER  - 
%0 Journal Article
%A V. I. Shcherbakov
%T Pointwise convergence of Fourier series with respect to multiplicative systems
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 37-42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a7/
%G ru
%F VMUMM_1983_2_a7
V. I. Shcherbakov. Pointwise convergence of Fourier series with respect to multiplicative systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 37-42. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a7/