Pointwise convergence of Fourier series with respect to multiplicative systems
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 37-42
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the pointwise convergence of Fourier series with respect to multiplicative Vilenkin systems. We derive some two-sided estimates of Dirichlet kernels. We find analogies of the Dini condition for the convergence of the Fourier series at some point $x$.
In particular, we show that, whenever the condition
$$
\int_G\frac{|f(x\dotplus t)+f(x\overset{.}-t)-2f(x)|}{t}\,dt\infty
$$
guarantees the convergence of the Fourier series $f(x)$ at $x$ the same is not true of the condition
$$
\int_G\frac{|f(x\dotplus t)-f(x)|}{t}\,dt\infty
$$
(for unbounded systems).
			
            
            
            
          
        
      @article{VMUMM_1983_2_a7,
     author = {V. I. Shcherbakov},
     title = {Pointwise convergence of {Fourier} series with respect to multiplicative systems},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {37--42},
     publisher = {mathdoc},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a7/}
}
                      
                      
                    TY - JOUR AU - V. I. Shcherbakov TI - Pointwise convergence of Fourier series with respect to multiplicative systems JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1983 SP - 37 EP - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a7/ LA - ru ID - VMUMM_1983_2_a7 ER -
V. I. Shcherbakov. Pointwise convergence of Fourier series with respect to multiplicative systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 37-42. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a7/
