Pointwise convergence of Fourier series with respect to multiplicative systems
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 37-42
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the pointwise convergence of Fourier series with respect to multiplicative Vilenkin systems. We derive some two-sided estimates of Dirichlet kernels. We find analogies of the Dini condition for the convergence of the Fourier series at some point $x$. In particular, we show that, whenever the condition $$ \int_G\frac{|f(x\dotplus t)+f(x\overset{.}-t)-2f(x)|}{t}\,dt<\infty $$ guarantees the convergence of the Fourier series $f(x)$ at $x$ the same is not true of the condition $$ \int_G\frac{|f(x\dotplus t)-f(x)|}{t}\,dt<\infty $$ (for unbounded systems).
@article{VMUMM_1983_2_a7,
author = {V. I. Shcherbakov},
title = {Pointwise convergence of {Fourier} series with respect to multiplicative systems},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {37--42},
year = {1983},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a7/}
}
V. I. Shcherbakov. Pointwise convergence of Fourier series with respect to multiplicative systems. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 37-42. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a7/