On the $p$-adic transcendence measure of the values of functions satisfying some functional equations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 31-37
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f(z)=f(z_1,\dots,z_8)$ be a transcendental function given by its Taylor series with coefficients from an algebraic field of finite degree over $Q$ in some neighbourhood $U$ of zero and satisfying Mahler type functional equations. Under some conditions on the function and on the algebraic point $\alpha=(\alpha_1,\dots,\alpha_8)\in U$ we compute the $p$-adic transcendence measure of $f(\alpha)$, $p$ being a prime number.
@article{VMUMM_1983_2_a6,
author = {S. M. Molchanov},
title = {On the $p$-adic transcendence measure of the values of functions satisfying some functional equations},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {31--37},
year = {1983},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a6/}
}
TY - JOUR AU - S. M. Molchanov TI - On the $p$-adic transcendence measure of the values of functions satisfying some functional equations JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1983 SP - 31 EP - 37 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a6/ LA - ru ID - VMUMM_1983_2_a6 ER -
S. M. Molchanov. On the $p$-adic transcendence measure of the values of functions satisfying some functional equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 31-37. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a6/