On the $p$-adic transcendence measure of the values of functions satisfying some functional equations
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 31-37
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $f(z)=f(z_1,\dots,z_8)$ be a transcendental function given by its Taylor series with coefficients from an algebraic field of finite degree over $Q$ in some neighbourhood $U$ of zero and satisfying Mahler type functional equations. Under some conditions on the
function and on the algebraic point $\alpha=(\alpha_1,\dots,\alpha_8)\in U$ we compute the $p$-adic transcendence measure of $f(\alpha)$, $p$ being a prime number.
			
            
            
            
          
        
      @article{VMUMM_1983_2_a6,
     author = {S. M. Molchanov},
     title = {On the $p$-adic transcendence measure of the values of functions satisfying some functional equations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--37},
     publisher = {mathdoc},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a6/}
}
                      
                      
                    TY - JOUR AU - S. M. Molchanov TI - On the $p$-adic transcendence measure of the values of functions satisfying some functional equations JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1983 SP - 31 EP - 37 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a6/ LA - ru ID - VMUMM_1983_2_a6 ER -
%0 Journal Article %A S. M. Molchanov %T On the $p$-adic transcendence measure of the values of functions satisfying some functional equations %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1983 %P 31-37 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a6/ %G ru %F VMUMM_1983_2_a6
S. M. Molchanov. On the $p$-adic transcendence measure of the values of functions satisfying some functional equations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 31-37. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a6/
