Proper classes corresponding to the functors $n\cdot\operatorname{Ext}$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 22-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for all $n>0$ the functor $n\cdot\operatorname{Ext}$ defines a proper clasp. We establish main properties of such classes.
@article{VMUMM_1983_2_a4,
     author = {S. N. Fedin},
     title = {Proper classes corresponding to the functors $n\cdot\operatorname{Ext}$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--24},
     publisher = {mathdoc},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a4/}
}
TY  - JOUR
AU  - S. N. Fedin
TI  - Proper classes corresponding to the functors $n\cdot\operatorname{Ext}$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 22
EP  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a4/
LA  - ru
ID  - VMUMM_1983_2_a4
ER  - 
%0 Journal Article
%A S. N. Fedin
%T Proper classes corresponding to the functors $n\cdot\operatorname{Ext}$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 22-24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a4/
%G ru
%F VMUMM_1983_2_a4
S. N. Fedin. Proper classes corresponding to the functors $n\cdot\operatorname{Ext}$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 22-24. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a4/