Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 19-21

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H(X)$ denote the group of all automorphisms of an algebraic $K3$-surface $X$ acting trivially on algebraic cycles. This group is cyclic and we denote the order of $H(X)$ by $m(X)$. We derive some results concerning possible values of $m(X)$. These results follow from some more general theorems on even lattices and their automorphisms.
@article{VMUMM_1983_2_a3,
     author = {S. P. Vorontsov},
     title = {Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {19--21},
     publisher = {mathdoc},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a3/}
}
TY  - JOUR
AU  - S. P. Vorontsov
TI  - Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 19
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a3/
LA  - ru
ID  - VMUMM_1983_2_a3
ER  - 
%0 Journal Article
%A S. P. Vorontsov
%T Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 19-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a3/
%G ru
%F VMUMM_1983_2_a3
S. P. Vorontsov. Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 19-21. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a3/