Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 19-21
Let $H(X)$ denote the group of all automorphisms of an algebraic $K3$-surface $X$ acting trivially on algebraic cycles. This group is cyclic and we denote the order of $H(X)$ by $m(X)$. We derive some results concerning possible values of $m(X)$. These results follow from some more general theorems on even lattices and their automorphisms.
@article{VMUMM_1983_2_a3,
author = {S. P. Vorontsov},
title = {Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {19--21},
year = {1983},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a3/}
}
TY - JOUR AU - S. P. Vorontsov TI - Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1983 SP - 19 EP - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a3/ LA - ru ID - VMUMM_1983_2_a3 ER -
S. P. Vorontsov. Automorphisms of even lattices arising in connection with automorphisms of algebraic $K3$ -surfaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 19-21. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a3/