The spectrum of the perturbed Laplace operator on the fundamental domain of a discrete group on the Lobachevskii plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 49-53
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $C(z)$ be a real valued function decreasing in some sense in the neighbourhoods of the cusps of the fundamental domains and
$$
Lu=-y^2\Delta u+C(z)u.
$$
Then $\sigma_{\mathrm{ac}}(L)=[1/4,+\infty)$; $\sigma_{\mathrm{sing}}(L)=\varnothing$; $\sigma_{\mathrm{pp}}(L)$ – is a discrete set of eigenvalues of finite multiplicities.
@article{VMUMM_1983_2_a10,
author = {V. P. Smolich},
title = {The spectrum of the perturbed {Laplace} operator on the fundamental domain of a discrete group on the {Lobachevskii} plane},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {49--53},
publisher = {mathdoc},
number = {2},
year = {1983},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a10/}
}
TY - JOUR AU - V. P. Smolich TI - The spectrum of the perturbed Laplace operator on the fundamental domain of a discrete group on the Lobachevskii plane JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1983 SP - 49 EP - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a10/ LA - ru ID - VMUMM_1983_2_a10 ER -
%0 Journal Article %A V. P. Smolich %T The spectrum of the perturbed Laplace operator on the fundamental domain of a discrete group on the Lobachevskii plane %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1983 %P 49-53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a10/ %G ru %F VMUMM_1983_2_a10
V. P. Smolich. The spectrum of the perturbed Laplace operator on the fundamental domain of a discrete group on the Lobachevskii plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 49-53. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a10/