The spectrum of the perturbed Laplace operator on the fundamental domain of a discrete group on the Lobachevskii plane
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 49-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C(z)$ be a real valued function decreasing in some sense in the neighbourhoods of the cusps of the fundamental domains and $$ Lu=-y^2\Delta u+C(z)u. $$ Then $\sigma_{\mathrm{ac}}(L)=[1/4,+\infty)$; $\sigma_{\mathrm{sing}}(L)=\varnothing$; $\sigma_{\mathrm{pp}}(L)$ – is a discrete set of eigenvalues of finite multiplicities.
@article{VMUMM_1983_2_a10,
     author = {V. P. Smolich},
     title = {The spectrum of the perturbed {Laplace} operator on the fundamental domain of a discrete group on the {Lobachevskii} plane},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {49--53},
     publisher = {mathdoc},
     number = {2},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a10/}
}
TY  - JOUR
AU  - V. P. Smolich
TI  - The spectrum of the perturbed Laplace operator on the fundamental domain of a discrete group on the Lobachevskii plane
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 49
EP  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a10/
LA  - ru
ID  - VMUMM_1983_2_a10
ER  - 
%0 Journal Article
%A V. P. Smolich
%T The spectrum of the perturbed Laplace operator on the fundamental domain of a discrete group on the Lobachevskii plane
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 49-53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a10/
%G ru
%F VMUMM_1983_2_a10
V. P. Smolich. The spectrum of the perturbed Laplace operator on the fundamental domain of a discrete group on the Lobachevskii plane. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 2 (1983), pp. 49-53. http://geodesic.mathdoc.fr/item/VMUMM_1983_2_a10/