Imbedding theorems for anisotropic Sobolev--Orlicz spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1983), pp. 32-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize the Sobolev imbedding theorems to the case of anisotropic Sobolev–Orlich spaces $\mathring{W}^1_{(B)}(\Omega)$. In the case of imbedding of the latter space into the space of all continuous functions we derive an estimate of the continuity module for $u(x)\in\mathring{W}^1_{(B)}(\Omega)$.
@article{VMUMM_1983_1_a8,
     author = {A. G. Korolev},
     title = {Imbedding theorems for anisotropic {Sobolev--Orlicz} spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {32--37},
     publisher = {mathdoc},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a8/}
}
TY  - JOUR
AU  - A. G. Korolev
TI  - Imbedding theorems for anisotropic Sobolev--Orlicz spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 32
EP  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a8/
LA  - ru
ID  - VMUMM_1983_1_a8
ER  - 
%0 Journal Article
%A A. G. Korolev
%T Imbedding theorems for anisotropic Sobolev--Orlicz spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 32-37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a8/
%G ru
%F VMUMM_1983_1_a8
A. G. Korolev. Imbedding theorems for anisotropic Sobolev--Orlicz spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1983), pp. 32-37. http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a8/