Univalence discs of meromorphic functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1983), pp. 22-24

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a nonconstant meromorphic function map the complex plane onto a Riemann surface $R$ over the Riemann sphere. We find the lower bound of the supremum of the radii of schlicht disks on $R$. We compare this bound with similar bounds of L. Ahlfors and Ch. Pommerenke.
@article{VMUMM_1983_1_a5,
     author = {I. B. Oshkin},
     title = {Univalence discs of meromorphic functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--24},
     publisher = {mathdoc},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a5/}
}
TY  - JOUR
AU  - I. B. Oshkin
TI  - Univalence discs of meromorphic functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 22
EP  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a5/
LA  - ru
ID  - VMUMM_1983_1_a5
ER  - 
%0 Journal Article
%A I. B. Oshkin
%T Univalence discs of meromorphic functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 22-24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a5/
%G ru
%F VMUMM_1983_1_a5
I. B. Oshkin. Univalence discs of meromorphic functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1983), pp. 22-24. http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a5/