Hypersymmetric powers of supercompacta
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1983), pp. 18-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that no hypersymmetric power functor $\exp_n$, $n\ge3$, preserves the property of a topological space to be supercompact Hausdorff. In the proof we use the construction of an example due to van Mill and Mills.
@article{VMUMM_1983_1_a4,
     author = {M. M. Zarichnyi},
     title = {Hypersymmetric powers of supercompacta},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {18--21},
     publisher = {mathdoc},
     number = {1},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a4/}
}
TY  - JOUR
AU  - M. M. Zarichnyi
TI  - Hypersymmetric powers of supercompacta
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1983
SP  - 18
EP  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a4/
LA  - ru
ID  - VMUMM_1983_1_a4
ER  - 
%0 Journal Article
%A M. M. Zarichnyi
%T Hypersymmetric powers of supercompacta
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1983
%P 18-21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a4/
%G ru
%F VMUMM_1983_1_a4
M. M. Zarichnyi. Hypersymmetric powers of supercompacta. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 1 (1983), pp. 18-21. http://geodesic.mathdoc.fr/item/VMUMM_1983_1_a4/