Reducible $p$-representations of a simple three-dimensional Lie $p$-algebra
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 45-49

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the category $\mathscr{P}$ of restricted finite-dimensional representations of the simple $3$-dimensional Lie algebra $L$. We show that $\mathscr{P}$ is equivalent to the sum of some categories of diagrams over finite dimensional vector spaces. We find the indecomposable objects in the latter categories. Thus we obtain a classification of indecomposable restricted representations of $L$ and an effective method of their construction.
@article{VMUMM_1982_6_a9,
     author = {A. N. Rudakov},
     title = {Reducible $p$-representations of a simple three-dimensional {Lie} $p$-algebra},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {45--49},
     publisher = {mathdoc},
     number = {6},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a9/}
}
TY  - JOUR
AU  - A. N. Rudakov
TI  - Reducible $p$-representations of a simple three-dimensional Lie $p$-algebra
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 45
EP  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a9/
LA  - ru
ID  - VMUMM_1982_6_a9
ER  - 
%0 Journal Article
%A A. N. Rudakov
%T Reducible $p$-representations of a simple three-dimensional Lie $p$-algebra
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 45-49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a9/
%G ru
%F VMUMM_1982_6_a9
A. N. Rudakov. Reducible $p$-representations of a simple three-dimensional Lie $p$-algebra. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 45-49. http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a9/