Reducible $p$-representations of a simple three-dimensional Lie $p$-algebra
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 45-49
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the category $\mathscr{P}$ of restricted finite-dimensional representations of the simple $3$-dimensional Lie algebra $L$. We show that $\mathscr{P}$ is equivalent to the sum of some categories of diagrams over finite dimensional vector spaces. We find the indecomposable objects in the latter categories. Thus we obtain a classification of indecomposable restricted representations of $L$ and an effective method of their construction.
@article{VMUMM_1982_6_a9,
author = {A. N. Rudakov},
title = {Reducible $p$-representations of a simple three-dimensional {Lie} $p$-algebra},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {45--49},
publisher = {mathdoc},
number = {6},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a9/}
}
TY - JOUR AU - A. N. Rudakov TI - Reducible $p$-representations of a simple three-dimensional Lie $p$-algebra JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 45 EP - 49 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a9/ LA - ru ID - VMUMM_1982_6_a9 ER -
A. N. Rudakov. Reducible $p$-representations of a simple three-dimensional Lie $p$-algebra. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 45-49. http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a9/