Approximation of classes of functions $W_p^\alpha(S^n)$ by the Fejér method in the metric $C(S^n)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 37-41
Cet article a éte moissonné depuis la source Math-Net.Ru
We estimate the function $$ G(W_p^\alpha(S^n),S_N^1,C(S^n))=\sup_{f\in W_p^\alpha(S^n)}\|f-S_N^1f\|_{C(S^n)}. $$
@article{VMUMM_1982_6_a7,
author = {A. I. Kamzolov},
title = {Approximation of classes of functions $W_p^\alpha(S^n)$ by the {Fej\'er} method in the metric $C(S^n)$},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {37--41},
year = {1982},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a7/}
}
TY - JOUR AU - A. I. Kamzolov TI - Approximation of classes of functions $W_p^\alpha(S^n)$ by the Fejér method in the metric $C(S^n)$ JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 37 EP - 41 IS - 6 UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a7/ LA - ru ID - VMUMM_1982_6_a7 ER -
A. I. Kamzolov. Approximation of classes of functions $W_p^\alpha(S^n)$ by the Fejér method in the metric $C(S^n)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 37-41. http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a7/