Approximation of classes of functions $W_p^\alpha(S^n)$ by the Fej\'er method in the metric $C(S^n)$
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 37-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate the function $$ G(W_p^\alpha(S^n),S_N^1,C(S^n))=\sup_{f\in W_p^\alpha(S^n)}\|f-S_N^1f\|_{C(S^n)}. $$
@article{VMUMM_1982_6_a7,
     author = {A. I. Kamzolov},
     title = {Approximation of classes of functions $W_p^\alpha(S^n)$ by the {Fej\'er} method in the metric $C(S^n)$},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {37--41},
     publisher = {mathdoc},
     number = {6},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a7/}
}
TY  - JOUR
AU  - A. I. Kamzolov
TI  - Approximation of classes of functions $W_p^\alpha(S^n)$ by the Fej\'er method in the metric $C(S^n)$
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 37
EP  - 41
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a7/
LA  - ru
ID  - VMUMM_1982_6_a7
ER  - 
%0 Journal Article
%A A. I. Kamzolov
%T Approximation of classes of functions $W_p^\alpha(S^n)$ by the Fej\'er method in the metric $C(S^n)$
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 37-41
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a7/
%G ru
%F VMUMM_1982_6_a7
A. I. Kamzolov. Approximation of classes of functions $W_p^\alpha(S^n)$ by the Fej\'er method in the metric $C(S^n)$. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 37-41. http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a7/