Varieties of representations of finite-dimensional algebras in prime algebras
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 31-37
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove that the pairs $(A_1,\mathfrak{G}_1)$ and $(A_2,\mathfrak{G}_2)$ have the same identical relations if and only if for some field extension $K_1\supset K$ the pairs $(K_1\otimes_K A_1,K_1\otimes_K\mathfrak{G}_1)$ and $(K_1\otimes_K A_2,K_1\otimes_K\mathfrak{G}_2)$ are semilinear isomorphic. Here $\mathfrak{G}_1$, $\mathfrak{G}_2$ are some finite dimensional $K$-algebras of signature $\Omega'$ and $A_1$, $A_2$ are some central prime algebras of signature $\Omega$.
			
            
            
            
          
        
      @article{VMUMM_1982_6_a6,
     author = {Yu. P. Razmyslov},
     title = {Varieties of representations of finite-dimensional algebras in prime algebras},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {31--37},
     publisher = {mathdoc},
     number = {6},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a6/}
}
                      
                      
                    TY - JOUR AU - Yu. P. Razmyslov TI - Varieties of representations of finite-dimensional algebras in prime algebras JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 31 EP - 37 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a6/ LA - ru ID - VMUMM_1982_6_a6 ER -
Yu. P. Razmyslov. Varieties of representations of finite-dimensional algebras in prime algebras. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 31-37. http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a6/
