Everywhere dense subspaces of topological products and properties associated with final compactness
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 21-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following. The $\sigma$–product of a family $\mathfrak{U}$ of topological spaces with countable base is a Lindelöf $\Sigma$-space if and only if $\mathfrak{U}$ has at most $2^{\aleph_0}$ non-homeomorphic elements. The $\sigma$-product of $\mathscr{K}$-analytical spaces is itself $\mathscr{K}$-analytical. Let $X$ be a $\sigma$-product of Lindelöf $\Sigma$-spaces and $C_p(X)$ the space of all continuous real-valued functions on $X$ in the topology of pointwise convergence. Then every bicompact $f\subset C_p(X)$ is a Frechet–Uryson space.
@article{VMUMM_1982_6_a4,
     author = {A. V. Arkhangel'skii and D. V. Ranchin},
     title = {Everywhere dense subspaces of topological products and properties associated with final compactness},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {21--28},
     publisher = {mathdoc},
     number = {6},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a4/}
}
TY  - JOUR
AU  - A. V. Arkhangel'skii
AU  - D. V. Ranchin
TI  - Everywhere dense subspaces of topological products and properties associated with final compactness
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 21
EP  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a4/
LA  - ru
ID  - VMUMM_1982_6_a4
ER  - 
%0 Journal Article
%A A. V. Arkhangel'skii
%A D. V. Ranchin
%T Everywhere dense subspaces of topological products and properties associated with final compactness
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 21-28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a4/
%G ru
%F VMUMM_1982_6_a4
A. V. Arkhangel'skii; D. V. Ranchin. Everywhere dense subspaces of topological products and properties associated with final compactness. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 21-28. http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a4/