Everywhere dense subspaces of topological products and properties associated with final compactness
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 21-28
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following. The $\sigma$–product of a family $\mathfrak{U}$ of topological spaces with countable base is a Lindelöf $\Sigma$-space if and only if $\mathfrak{U}$ has at most $2^{\aleph_0}$ non-homeomorphic elements. The $\sigma$-product of $\mathscr{K}$-analytical spaces is itself $\mathscr{K}$-analytical. Let $X$ be a $\sigma$-product of Lindelöf $\Sigma$-spaces and $C_p(X)$ the space of all continuous real-valued functions on $X$ in the topology of pointwise convergence. Then every bicompact $f\subset C_p(X)$ is a Frechet–Uryson space.
@article{VMUMM_1982_6_a4,
author = {A. V. Arkhangel'skii and D. V. Ranchin},
title = {Everywhere dense subspaces of topological products and properties associated with final compactness},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {21--28},
publisher = {mathdoc},
number = {6},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a4/}
}
TY - JOUR AU - A. V. Arkhangel'skii AU - D. V. Ranchin TI - Everywhere dense subspaces of topological products and properties associated with final compactness JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 21 EP - 28 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a4/ LA - ru ID - VMUMM_1982_6_a4 ER -
%0 Journal Article %A A. V. Arkhangel'skii %A D. V. Ranchin %T Everywhere dense subspaces of topological products and properties associated with final compactness %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1982 %P 21-28 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a4/ %G ru %F VMUMM_1982_6_a4
A. V. Arkhangel'skii; D. V. Ranchin. Everywhere dense subspaces of topological products and properties associated with final compactness. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 21-28. http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a4/