Equivalence of two definitions of the algebraic $K$-theory of spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 8-12

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new construction of the algebraic $K$-functor $AX$ for any topological space $X$. This construction has the origin in the theory of buildings and BN-pairs. Then we prove the equivalence of this construction and that of Waldhausen.
@article{VMUMM_1982_6_a2,
     author = {Yu. P. Solov'ev},
     title = {Equivalence of two definitions of the algebraic $K$-theory of spaces},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {8--12},
     publisher = {mathdoc},
     number = {6},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a2/}
}
TY  - JOUR
AU  - Yu. P. Solov'ev
TI  - Equivalence of two definitions of the algebraic $K$-theory of spaces
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 8
EP  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a2/
LA  - ru
ID  - VMUMM_1982_6_a2
ER  - 
%0 Journal Article
%A Yu. P. Solov'ev
%T Equivalence of two definitions of the algebraic $K$-theory of spaces
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 8-12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a2/
%G ru
%F VMUMM_1982_6_a2
Yu. P. Solov'ev. Equivalence of two definitions of the algebraic $K$-theory of spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 8-12. http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a2/