Equivalence of two definitions of the algebraic $K$-theory of spaces
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 8-12
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a new construction of the algebraic $K$-functor $AX$ for any topological space $X$. This construction has the origin in the theory of buildings and BN-pairs. Then we prove the equivalence of this construction and that of Waldhausen.
@article{VMUMM_1982_6_a2,
author = {Yu. P. Solov'ev},
title = {Equivalence of two definitions of the algebraic $K$-theory of spaces},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {8--12},
publisher = {mathdoc},
number = {6},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a2/}
}
Yu. P. Solov'ev. Equivalence of two definitions of the algebraic $K$-theory of spaces. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 6 (1982), pp. 8-12. http://geodesic.mathdoc.fr/item/VMUMM_1982_6_a2/