The mean value theorem for harmonic functions in a domain of Hilbert space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 32-35

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the value of any harmonic function whose domain is an open set in the Hilbert space in a given point $x$ is equal to the mean value of the function with respect to a measure given on a ball with the centre $x$. From this we derive a theorem of Liouville that says that a bounded harmonic function defined in all points of a Hilbert space is constant.
@article{VMUMM_1982_5_a8,
     author = {A. A. Belyaev},
     title = {The mean value theorem for harmonic functions in a domain of {Hilbert} space},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {32--35},
     publisher = {mathdoc},
     number = {5},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a8/}
}
TY  - JOUR
AU  - A. A. Belyaev
TI  - The mean value theorem for harmonic functions in a domain of Hilbert space
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 32
EP  - 35
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a8/
LA  - ru
ID  - VMUMM_1982_5_a8
ER  - 
%0 Journal Article
%A A. A. Belyaev
%T The mean value theorem for harmonic functions in a domain of Hilbert space
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 32-35
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a8/
%G ru
%F VMUMM_1982_5_a8
A. A. Belyaev. The mean value theorem for harmonic functions in a domain of Hilbert space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 32-35. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a8/