The mean value theorem for harmonic functions in a domain of Hilbert space
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 32-35
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the value of any harmonic function whose domain is an open set in the Hilbert space in a given point $x$ is equal to the mean value of the function with respect to a measure given on a ball with the centre $x$. From this we derive a theorem of Liouville that says that a bounded harmonic function defined in all points of a Hilbert space is constant.
@article{VMUMM_1982_5_a8,
author = {A. A. Belyaev},
title = {The mean value theorem for harmonic functions in a domain of {Hilbert} space},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {32--35},
publisher = {mathdoc},
number = {5},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a8/}
}
TY - JOUR AU - A. A. Belyaev TI - The mean value theorem for harmonic functions in a domain of Hilbert space JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 32 EP - 35 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a8/ LA - ru ID - VMUMM_1982_5_a8 ER -
A. A. Belyaev. The mean value theorem for harmonic functions in a domain of Hilbert space. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 32-35. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a8/