An inverse boundary value problem in magnetosphere investigations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 22-25
Cet article a éte moissonné depuis la source Math-Net.Ru
Here we study some properties of the dimension $\operatorname{ind}(Y,X)$. The main result is: $\operatorname{ind}(Y,X)\le\operatorname{ind}Y+1$ for all Tychonoff spaces $X$. This enables to prove a generalization of the Uryson inequality. A necessary condition is found for the equality i$\operatorname{ind}(Y,I^\tau)=\operatorname{ind}(Y)$.
@article{VMUMM_1982_5_a5,
author = {V. V. Tkachuk},
title = {An inverse boundary value problem in magnetosphere investigations},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {22--25},
year = {1982},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a5/}
}
V. V. Tkachuk. An inverse boundary value problem in magnetosphere investigations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 22-25. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a5/