An inverse boundary value problem in magnetosphere investigations
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 22-25

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we study some properties of the dimension $\operatorname{ind}(Y,X)$. The main result is: $\operatorname{ind}(Y,X)\le\operatorname{ind}Y+1$ for all Tychonoff spaces $X$. This enables to prove a generalization of the Uryson inequality. A necessary condition is found for the equality i$\operatorname{ind}(Y,I^\tau)=\operatorname{ind}(Y)$.
@article{VMUMM_1982_5_a5,
     author = {V. V. Tkachuk},
     title = {An inverse boundary value problem in magnetosphere investigations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--25},
     publisher = {mathdoc},
     number = {5},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a5/}
}
TY  - JOUR
AU  - V. V. Tkachuk
TI  - An inverse boundary value problem in magnetosphere investigations
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 22
EP  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a5/
LA  - ru
ID  - VMUMM_1982_5_a5
ER  - 
%0 Journal Article
%A V. V. Tkachuk
%T An inverse boundary value problem in magnetosphere investigations
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 22-25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a5/
%G ru
%F VMUMM_1982_5_a5
V. V. Tkachuk. An inverse boundary value problem in magnetosphere investigations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 22-25. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a5/