An inverse boundary value problem in magnetosphere investigations
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 22-25
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Here we study some properties of the dimension $\operatorname{ind}(Y,X)$. The main result is: $\operatorname{ind}(Y,X)\le\operatorname{ind}Y+1$ for all Tychonoff spaces $X$. This enables to prove a generalization of the Uryson inequality. A necessary condition is found for the equality i$\operatorname{ind}(Y,I^\tau)=\operatorname{ind}(Y)$.
			
            
            
            
          
        
      @article{VMUMM_1982_5_a5,
     author = {V. V. Tkachuk},
     title = {An inverse boundary value problem in magnetosphere investigations},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {22--25},
     publisher = {mathdoc},
     number = {5},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a5/}
}
                      
                      
                    V. V. Tkachuk. An inverse boundary value problem in magnetosphere investigations. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 22-25. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a5/
