Estimate of a linear form in the values of some functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 14-17
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish effective lower bounds for a linear form in the values at distinct algebraic
points of the functions
\begin{align}
f_k(z)=\sum_{n=1}^\infty\frac1{((n-1)!)^mn^k}\biggl(\frac{{}'z}m\biggr)^{mn},
\quad k=1,\dots,m-1,\notag\\
f_m=(z)=\sum_{n=0}^\infty\frac1{(n!)^m}\biggl(\frac{z}m\biggr)^{mn}.
\notag
\end{align}
@article{VMUMM_1982_5_a3,
author = {V. G. Chirskii},
title = {Estimate of a linear form in the values of some functions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {14--17},
publisher = {mathdoc},
number = {5},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a3/}
}
V. G. Chirskii. Estimate of a linear form in the values of some functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 14-17. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a3/