On probabilities of large deviations for random fields with the mixing property
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 11-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a large deviation theorem for a collection of mixing random variables indexed by $Z^n$, $n\ge1$. These results are applied to investigating the remainder in the central limit theorem.
@article{VMUMM_1982_5_a2,
     author = {S. Akhmedov},
     title = {On probabilities of large deviations for random fields with the mixing property},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--14},
     publisher = {mathdoc},
     number = {5},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a2/}
}
TY  - JOUR
AU  - S. Akhmedov
TI  - On probabilities of large deviations for random fields with the mixing property
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 11
EP  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a2/
LA  - ru
ID  - VMUMM_1982_5_a2
ER  - 
%0 Journal Article
%A S. Akhmedov
%T On probabilities of large deviations for random fields with the mixing property
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 11-14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a2/
%G ru
%F VMUMM_1982_5_a2
S. Akhmedov. On probabilities of large deviations for random fields with the mixing property. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 11-14. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a2/