On probabilities of large deviations for random fields with the mixing property
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 11-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove a large deviation theorem for a collection of mixing random variables indexed by $Z^n$, $n\ge1$. These results are applied to investigating the remainder in the central limit theorem.
			
            
            
            
          
        
      @article{VMUMM_1982_5_a2,
     author = {S. Akhmedov},
     title = {On probabilities of large deviations for random fields with the mixing property},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--14},
     publisher = {mathdoc},
     number = {5},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a2/}
}
                      
                      
                    TY - JOUR AU - S. Akhmedov TI - On probabilities of large deviations for random fields with the mixing property JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 11 EP - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a2/ LA - ru ID - VMUMM_1982_5_a2 ER -
S. Akhmedov. On probabilities of large deviations for random fields with the mixing property. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 11-14. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a2/
