$A$-integrability of functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 59-63
Voir la notice de l'article provenant de la source Math-Net.Ru
We give an example of a function which is $A$-integrable on a segment $[a,b]$ and is not $A$-integrable on all subsegments $[a',b']\subset[a,b]$, $[a',b']\ne[a,b]$, $a'\ne b'$. We prove the following theorem. The class of sets $\Bigl\{x\in[a,b]:(A)\displaystyle\int_{x_0}^x f(t)\,dt\,\text{exists}\Bigr\}$, $a\leq x_0\leq b$, is exactly the class of sets which contain $x_0$ and are of the type $F_{\sigma\delta}$ on $[a,b]$.
@article{VMUMM_1982_5_a16,
author = {T. P. Lukashenko},
title = {$A$-integrability of functions},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {59--63},
publisher = {mathdoc},
number = {5},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a16/}
}
T. P. Lukashenko. $A$-integrability of functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 59-63. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a16/