$A$-integrability of functions
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 59-63

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an example of a function which is $A$-integrable on a segment $[a,b]$ and is not $A$-integrable on all subsegments $[a',b']\subset[a,b]$, $[a',b']\ne[a,b]$, $a'\ne b'$. We prove the following theorem. The class of sets $\Bigl\{x\in[a,b]:(A)\displaystyle\int_{x_0}^x f(t)\,dt\,\text{exists}\Bigr\}$, $a\leq x_0\leq b$, is exactly the class of sets which contain $x_0$ and are of the type $F_{\sigma\delta}$ on $[a,b]$.
@article{VMUMM_1982_5_a16,
     author = {T. P. Lukashenko},
     title = {$A$-integrability of functions},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {59--63},
     publisher = {mathdoc},
     number = {5},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a16/}
}
TY  - JOUR
AU  - T. P. Lukashenko
TI  - $A$-integrability of functions
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 59
EP  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a16/
LA  - ru
ID  - VMUMM_1982_5_a16
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%T $A$-integrability of functions
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 59-63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a16/
%G ru
%F VMUMM_1982_5_a16
T. P. Lukashenko. $A$-integrability of functions. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 59-63. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a16/