The algebra of enumeration operators
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 7-11

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the algebra of all operators of enumeration ($e$-operators) of the form $\mathscr{E}=\langle E,I,*\rangle$. Here $E,I,*$ stand respectively for the set of all $e$-operators, the identity operator and the binary operation of superposition on $E$. We prove the existence of $n$-element bases ($n\ge2$), the continuality of the family of maximal subalgebras in $\mathscr{E}$ and show that $\mathscr{E}$ is not finitely presented.
@article{VMUMM_1982_5_a1,
     author = {S. D. Zakharov},
     title = {The algebra of enumeration operators},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {7--11},
     publisher = {mathdoc},
     number = {5},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a1/}
}
TY  - JOUR
AU  - S. D. Zakharov
TI  - The algebra of enumeration operators
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 7
EP  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a1/
LA  - ru
ID  - VMUMM_1982_5_a1
ER  - 
%0 Journal Article
%A S. D. Zakharov
%T The algebra of enumeration operators
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 7-11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a1/
%G ru
%F VMUMM_1982_5_a1
S. D. Zakharov. The algebra of enumeration operators. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 7-11. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a1/