The algebra of enumeration operators
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 7-11
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the algebra of all operators of enumeration ($e$-operators) of the form $\mathscr{E}=\langle E,I,*\rangle$. Here $E,I,*$ stand respectively for the set of all $e$-operators, the identity operator and the binary operation of superposition on $E$. We prove the existence of $n$-element bases ($n\ge2$), the continuality of the family of maximal subalgebras in $\mathscr{E}$ and show that $\mathscr{E}$ is not finitely presented.
@article{VMUMM_1982_5_a1,
author = {S. D. Zakharov},
title = {The algebra of enumeration operators},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {7--11},
publisher = {mathdoc},
number = {5},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a1/}
}
S. D. Zakharov. The algebra of enumeration operators. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 5 (1982), pp. 7-11. http://geodesic.mathdoc.fr/item/VMUMM_1982_5_a1/