On a $C(\Omega)$-algebra of small dimension two and its tensor powers
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 35-39
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We build an example of a maximal ideal in the algebra of all continuous functions on a compact whose homological dimension is $1$. It is shown that the small global dimension of this algebra is $2$. We then compute the small global dimensions of its tensor powers.
			
            
            
            
          
        
      @article{VMUMM_1982_3_a9,
     author = {A. N. Krichevets},
     title = {On a $C(\Omega)$-algebra of small dimension two and its tensor powers},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {35--39},
     publisher = {mathdoc},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a9/}
}
                      
                      
                    TY - JOUR AU - A. N. Krichevets TI - On a $C(\Omega)$-algebra of small dimension two and its tensor powers JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 35 EP - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a9/ LA - ru ID - VMUMM_1982_3_a9 ER -
A. N. Krichevets. On a $C(\Omega)$-algebra of small dimension two and its tensor powers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a9/
