On a $C(\Omega)$-algebra of small dimension two and its tensor powers
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 35-39
Cet article a éte moissonné depuis la source Math-Net.Ru
We build an example of a maximal ideal in the algebra of all continuous functions on a compact whose homological dimension is $1$. It is shown that the small global dimension of this algebra is $2$. We then compute the small global dimensions of its tensor powers.
@article{VMUMM_1982_3_a9,
author = {A. N. Krichevets},
title = {On a $C(\Omega)$-algebra of small dimension two and its tensor powers},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {35--39},
year = {1982},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a9/}
}
A. N. Krichevets. On a $C(\Omega)$-algebra of small dimension two and its tensor powers. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 35-39. http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a9/