Peculiarities of the trajectories of an oscillator excited by a stationary random force
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 85-92

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a linear oscillator be affected by a Gaussian stationary process with $$ \int_0^\infty t|R(t)|\,dt\infty, $$ where $R(t)$ is its correlation function. Then almost for sure the amplitude becomes, first, arbitrarily large and, then, arbitrarily small.
@article{VMUMM_1982_3_a20,
     author = {N. I. Mikhailov},
     title = {Peculiarities of the trajectories of an oscillator excited by a stationary random force},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {85--92},
     publisher = {mathdoc},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a20/}
}
TY  - JOUR
AU  - N. I. Mikhailov
TI  - Peculiarities of the trajectories of an oscillator excited by a stationary random force
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 85
EP  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a20/
LA  - ru
ID  - VMUMM_1982_3_a20
ER  - 
%0 Journal Article
%A N. I. Mikhailov
%T Peculiarities of the trajectories of an oscillator excited by a stationary random force
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 85-92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a20/
%G ru
%F VMUMM_1982_3_a20
N. I. Mikhailov. Peculiarities of the trajectories of an oscillator excited by a stationary random force. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 85-92. http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a20/