Peculiarities of the trajectories of an oscillator excited by a stationary random force
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 85-92
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a linear oscillator be affected by a Gaussian stationary process with
$$
\int_0^\infty t|R(t)|\,dt\infty,
$$
where $R(t)$ is its correlation function. Then almost for sure the amplitude becomes, first, arbitrarily large and, then, arbitrarily small.
@article{VMUMM_1982_3_a20,
author = {N. I. Mikhailov},
title = {Peculiarities of the trajectories of an oscillator excited by a stationary random force},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {85--92},
publisher = {mathdoc},
number = {3},
year = {1982},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a20/}
}
TY - JOUR AU - N. I. Mikhailov TI - Peculiarities of the trajectories of an oscillator excited by a stationary random force JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 85 EP - 92 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a20/ LA - ru ID - VMUMM_1982_3_a20 ER -
N. I. Mikhailov. Peculiarities of the trajectories of an oscillator excited by a stationary random force. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 85-92. http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a20/