On divergence sets for trigonometric Fourier series
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 11-16

Voir la notice de l'article provenant de la source Math-Net.Ru

There exists $f(x)\in C[0,2\pi]$, with the following condition. If $E$ is the divergence set for the trigonometric Fourier series of $f(x)$ then $E\in G_{\delta\sigma}$, $E\notin F_\sigma$, $E\notin G_\delta$.
@article{VMUMM_1982_3_a2,
     author = {S. Yu. Lukashenko},
     title = {On divergence sets for trigonometric {Fourier} series},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {11--16},
     publisher = {mathdoc},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a2/}
}
TY  - JOUR
AU  - S. Yu. Lukashenko
TI  - On divergence sets for trigonometric Fourier series
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 11
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a2/
LA  - ru
ID  - VMUMM_1982_3_a2
ER  - 
%0 Journal Article
%A S. Yu. Lukashenko
%T On divergence sets for trigonometric Fourier series
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 11-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a2/
%G ru
%F VMUMM_1982_3_a2
S. Yu. Lukashenko. On divergence sets for trigonometric Fourier series. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 11-16. http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a2/