Stabilization of the trivial solution for an $n$-th order stationary linear differential equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 57-61

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we give a criterion for a linear equation of any arbitrary order with constant coefficients to have the following property: the trivial solution of the equation may be stabilized by a periodic perturbation which is small in average and is equal to zero on the most part of the period. An algorithm for construction such perturbation is given.
@article{VMUMM_1982_3_a13,
     author = {V. Klajnig},
     title = {Stabilization of the trivial solution for an $n$-th order stationary linear differential equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--61},
     publisher = {mathdoc},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/}
}
TY  - JOUR
AU  - V. Klajnig
TI  - Stabilization of the trivial solution for an $n$-th order stationary linear differential equation
JO  - Vestnik Moskovskogo universiteta. Matematika, mehanika
PY  - 1982
SP  - 57
EP  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/
LA  - ru
ID  - VMUMM_1982_3_a13
ER  - 
%0 Journal Article
%A V. Klajnig
%T Stabilization of the trivial solution for an $n$-th order stationary linear differential equation
%J Vestnik Moskovskogo universiteta. Matematika, mehanika
%D 1982
%P 57-61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/
%G ru
%F VMUMM_1982_3_a13
V. Klajnig. Stabilization of the trivial solution for an $n$-th order stationary linear differential equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 57-61. http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/