Stabilization of the trivial solution for an $n$-th order stationary linear differential equation
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 57-61
In this paper we give a criterion for a linear equation of any arbitrary order with constant coefficients to have the following property: the trivial solution of the equation may be stabilized by a periodic perturbation which is small in average and is equal to zero on the most part of the period. An algorithm for construction such perturbation is given.
@article{VMUMM_1982_3_a13,
author = {V. Klajnig},
title = {Stabilization of the trivial solution for an $n$-th order stationary linear differential equation},
journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
pages = {57--61},
year = {1982},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/}
}
TY - JOUR AU - V. Klajnig TI - Stabilization of the trivial solution for an $n$-th order stationary linear differential equation JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 57 EP - 61 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/ LA - ru ID - VMUMM_1982_3_a13 ER -
V. Klajnig. Stabilization of the trivial solution for an $n$-th order stationary linear differential equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 57-61. http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/