Stabilization of the trivial solution for an $n$-th order stationary linear differential equation
    
    
  
  
  
      
      
      
        
Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 57-61
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we give a criterion for a linear equation of any arbitrary order with constant coefficients to have the following property: the trivial solution of the equation may be stabilized by a periodic perturbation which is small in average and is equal to zero on the most part of the period. An algorithm for construction such perturbation is given.
			
            
            
            
          
        
      @article{VMUMM_1982_3_a13,
     author = {V. Klajnig},
     title = {Stabilization of the trivial solution for an $n$-th order stationary linear differential equation},
     journal = {Vestnik Moskovskogo universiteta. Matematika, mehanika},
     pages = {57--61},
     publisher = {mathdoc},
     number = {3},
     year = {1982},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/}
}
                      
                      
                    TY - JOUR AU - V. Klajnig TI - Stabilization of the trivial solution for an $n$-th order stationary linear differential equation JO - Vestnik Moskovskogo universiteta. Matematika, mehanika PY - 1982 SP - 57 EP - 61 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/ LA - ru ID - VMUMM_1982_3_a13 ER -
%0 Journal Article %A V. Klajnig %T Stabilization of the trivial solution for an $n$-th order stationary linear differential equation %J Vestnik Moskovskogo universiteta. Matematika, mehanika %D 1982 %P 57-61 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/ %G ru %F VMUMM_1982_3_a13
V. Klajnig. Stabilization of the trivial solution for an $n$-th order stationary linear differential equation. Vestnik Moskovskogo universiteta. Matematika, mehanika, no. 3 (1982), pp. 57-61. http://geodesic.mathdoc.fr/item/VMUMM_1982_3_a13/
